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Abstract

Identifying where a photo was taken can be achieved
by matching the query ground view image to a satellite
image of known location. This is done by transforming
the images into feature representations and comparing the
distance between vectors within the space to find a close
match. Historically the number of correct recalls within top
1% of matches was used as a metric. This paper proposes a
novel metric, Proportional Search Space Reduction (PSSR),
which measures the reduction in the search space of images
without the loss of the correct image. Three models were
trained and evaluated to show that models with high Recall
at 1% do not perform as well in real world applications as
the metric may suggest, and proposes the use of PSSR for
future research into the problem.

1. Introduction

Image geo-location aims to identify the location of an
image from its contents, without using embedded metadata
(such as EXIF location). Many social media sites remove
metadata from images before they are made public to pro-
tect users; this can make corroboration of location of a pho-
tograph intractable for journalists or governments. Image
geo-location has been conducted manually as an investi-
gation technique in many high profile cases, such as the
downing of Malaysia Airlines MH17 over Ukraine in 2014,
where images of Russian launchers were located by match-
ing them to road signs in street view images, satellite pho-
tos, and social media posts.

Image geo-location is an image retrieval problem; the
query is posed as a ground level image with location un-
known, and its matching aerial image (with coordinate posi-
tion known) provides the solution. The most common met-
ric for performance found in the literature was introduced
to this domain by Lin et al. [9] as Recall at K (R@K). This
is defined as the accuracy of the model across the test set

to recall, within the top K results (or top K% of results),
the correct aerial image for a each query image within the
set. The R@K metric is known to have the issue of being
less descriptive of success for smaller test sets, as Ghanem
et al. [4] noted: ”one of the shortcomings of the R@K met-
ric is that it depends on the size of the validation dataset”.
R@K% is considered more balanced as, when the valida-
tion set grows, the allowable error for an image to remain in
the top 1% grows with it proportionally.

Incredibly impressive R@1 and R@1% accuracy has
been achieved in the past 82.53% and 99.67% respectively
[7], however this was using 360◦ panoramic images com-
monly found on Google Street View and unfortunately the
same model only scored a meagre 4% R@1% on ordinary
photographs with the field of view (FoV) limited to 70◦.
This could indicate a misalignment between the common
metric used within the domain of research and the human-
centric issue that image geo-location is attempting to solve,
as the performance on panoramic images struggles to trans-
fer to limited FoVs.

If the assumption is made that image geo-location will,
in the close term future at least, not surpass the abilities of
trained humans, then there will be the requirement for hu-
man intervention within systems utilising these models. Re-
defining the metrics for success as the ability of the model
to reduce cognitive load from human operators, and provide
results as fast as possible will encourage the development of
models that are most fit for purpose for use by humans.

1.1. Contributions

This paper introduces a novel metric called Proportional
Search Space Reduction for cross view image geo-location
focused on the proportional reduction of the search space.
The metric is applied to a state of the art model to con-
trast the performance against the canonical R@K metric,
and shows the limitations of the R@K metric’s implemen-
tations. Additionally this paper proposes a method of hier-
archical batching to create ”super batches” to improve the
training speed of networks while online triplet mining.
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1.2. Related Work

In 2008 Hays and Efros [5] proposed an algorithm to
predict image locations through similarity of image features
(forests, bodies of water, etc) to those held on database in
order to geo-localise regions of likelihood. Subsequently
Arandjelovic̀ et al. [1] investigated the use of Convolutional
Neural Networks (CNNs) as a method of comparison in-
variant of clutter and viewpoint with their NetVLAD paper.
Although this proved a highly successful technique for lo-
cations for which there exist many photographs to match
(such as common tourist destinations like the Eiffel Tower),
locations that are not frequently captured were not easily
identifiable. Weyand et al. in PlaNet [18] used CNNs and
LSTMs to estimate the location of images within a 200km
location without querying the entire database, this was done
by treating the problem as a classification problem through
dividing the globe into cells and predicting the likelihood
of an image belonging to a cell, localising images to larger
regions.

A change in perspective. Lin et al. [9] introduced the
use of cross-view aerial images which, taking advantage of
the almost total imagery coverage of the earth’s land surface
area, solved the issue of the lack of sufficient data to match
the query image. Lin et al. [10] subsequently introduced the
use of Siamese Neural Networks, inspired by their use in
DeepFace [16], and created a dataset of images from street
view panoramas and 45◦ aerial images. Workman et al.
[19] collected the canonical CVUSA dataset with 1,036,804
Street View panoramas and 551,851 images from the Flickr
photo sharing website. Assessing several networks’ perfor-
mance with pretrained weights from Places [20] and Im-
ageNet [3]. They acknowleged that the dataset contained
many images that did not provide enough context to draw
useful feature vectors from.

Loss functions. Vo and Hays [17] experimented with
different network architectures, loss functions, and data
augmentation methods and found that a network with triplet
loss performed better than the siamese network with con-
trastive loss by a large margin. Triplet loss forces the net-
work to reduce the distance between the positive example
and the anchor image, d(a, p) i.e dpos , and increase the dis-
tance between the negative and the anchor, d(a, n) i.e. dneg .
The loss function is defined as:

Lmax =
1

N

N∑
i

max
(
dpos − dneg + α, 0

)
(1)

where:

dpos = d(f(x1), f(x2)) = ||f(x1)− f(x2)||2 (2)

and α is some margin greater than zero, typically cho-
sen between 0 ≤ α ≤ 1. Vo and Hays also noted, as did

Figure 1. Triplet Mining. Semi-hard negatives are further from the
anchor (A) than the positive (P) yet within the margin and provide
the fastest learning for the network

Schroff et al. in their FaceNet [13] paper, that triplet sam-
pling can significantly improve learning performance by se-
lecting triplets that are hard to distinguish from each other.
Randomly selected triplets are routinely trivially easy due
to the fact that the positive image is most likely closer to
the anchor image than the size of the margin (d(a, p)+α <
d(a, n)) and thus returns a loss of 0. Semi-hard triplets (see
figure 1) occur when the distance of the negative to the an-
chor is not less than the positive to the anchor, however the
difference is still less than the margin, so the loss is not
driven to zero i.e. d(a, n) < d(a, p) < d(a, p) + α.

Vo and Hays [17] proposed the use of a novel soft-margin
triplet loss to overcome the issue of selecting a margin used
in max-margin triplet loss. This improvement proved to be
effective and was built on by Hu et al. [8] with the weighted
soft-margin ranking loss used in CVM-Net-I and CVM-
Net-II.

Lsoft = ln(1 + eλd) (3)

where: d = dpos − dneg and λ is a weight value that,
when increased, improves the speed of convergence. A
weight value of λ = 10 was experimentally found to per-
form well by Hu et al.

Triplet Mining. Hu et al. [8] proposed their CVM-
Net architectures, incorporating the NetVLAD module to
pool the local feature extractions from the siamese CNNs.
This achieved significant improvements over the state of
the art. Their methodology included initial training on ran-
domly assigned triplets before mining hard triplets for fur-
ther training. Cai et al. [2] proposed a novel loss method
that adaptively focused on semi-hard triplets to improve net-
work training and learn more discriminative features. Zhu
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et al. [21] furthered this approach with online global mining
using updates during the training step to avoid the compu-
tational cost of offline global mining.

Image alignment. Hu et al. [8] proposed the CVM-
Net architecture, utilising NetVLAD to form global image
descriptors that were invariant to large viewpoint changes.
Shi et al. [14] investigated the use of polar transforming the
aerial image in order to identify an orientation using a slid-
ing window method. The polar transformed aerial image
was cropped and shifted to best align the ground features to
the aerial image. This method produced results of 98.54%
recall within top 10 and 91.96% within the top 1 images for
images with 360◦ FoV. Zhu et al. [21] further highlighted
the importance of image alignment in their revisitiaion pa-
per. Zhu et al. [22] approached the subject of top-down
alignment of aerial images with the VIGOR benchmark set
introducing aerial imagery with coordinates identifying the
location of the ground view image, rather than images be-
ing centred. More recently Hogan et al. [7] produced the
Where In The World (WITW) dataset, partially to address
the difference in parallax of aerial images commonly used
in mapping applications, compared to the more expensive
high resolution satellite imagery. Several of these models
were combined in an ensemble model by Ghanem et al. [4]
noting extremely promising results, yet limited deployablil-
ity for running several such models concurrently. In the
same year Rao et al. [12] proposed a cross convolutional
model based on a Resnet50 [6] architecture showing over
90% R@1.

1.3. Problem Statement

The key issue noted in many of the cited papers is
the difference in performance of models when provided
panoramic (360◦ FoV) images, and the more limited (70-
90◦) FoV images that are commonly taken and distributed.
The R@K metric provides very little insight into the perfor-
mance of images that are not in the K closest matches. The
additional context is important for applications of CVIG,
where end users are looking to identify the matching satel-
lite image. In the manual form of CVIG, operators will look
to reduce the search space by identifying markers within
the image to narrow the search by country (e.g. using road
markings, language on signs, or known information about
the image), region (floral makeup or man-made structures),
and location (comparison matching). At the current perfor-
mance of state-of-the-art models, automating this process
will not remove humans from the loop. Augmenting their
ability by identifying the highest likelihood locations and
reducing the search space of possibilities is well within the
current capability. Crucially, more needs to be known about
how the models perform on reducing the search space to
practically apply the models without high failure rates.

1.4. Research Questions

The following research questions seek answers to key is-
sues in creating and assessing CVIG models in closer align-
ment to real world application needs.

1. By how much do different cross-view image geo-
location model architectures reduce the search space
with 100% recall?

2. How can datasets be qualitatively improved or en-
larged?

3. How are triplets best mined for improved training
speed?

2. Methods
2.1. Dataset

The dataset used throughout this study was the CVUSA
dataset, to which access was granted by Workman et al.
[19]. The dataset consists of two parts; the first part contain-
ing approximately 550,000 images scraped from the web-
site www.flickr.com with corresponding geolocated satel-
lite images scraped from Bing maps, the second part con-
sisting around 1.2 million panoramic images from Google
Street-view with corresponding satellite photos. This paper
focuses mainly on the Flickr dataset, with some minor aug-
mentation using a subset of streetview images. The Flickr
images were all scraped from the website from different lo-
cations in the United States, a detailed breakdown of which
can be found within the accompanying paper [19]. Many of
the images were not suited to cross-view geo-location due to
the lack of context. Macro flora and fauna; sport and scuba-
diving; and close-up vehicle and building photography are
very common within the dataset (see fig. 2).

To remove these images a subset of 10,000 images were
hand classified as viable or non-viable for geo-location with
best effort made to achieve a 50% split of both classes.
A VGG16 CNN with weights pre-trained on Places 365
was used as a feature extraction network, with the fea-
ture vectors classified by a Random Forrest classifier. This
model produced an 87% accuracy which reduced the size
of the dataset from 552,817 to 201,051 ground samples. A
further 41,980 images were generated by cropping a sub-
set of street-view panoramas to 90◦ field of view (4 per
panorama).

An additional set of images were scraped from
www.pic2map.com and matching satellite images were
downloaded from Bing maps as a test set. This test set was
hand validated, with any non-viable images discarded leav-
ing 6149 images in total. The test set was selected given the
worldwide distribution of the images on the site, correcting
for any chance of a performance boost due to having seen
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Figure 2. Images from the CVUSA dataset that are unsuitable for cross-view matching due to lack of context within the image

Figure 3. The outline siamese network architecture, where the
embedding networks used were either VGG16 or ResNet50, and
f(xi) being either a fully connected feature layer or NetVLAD
layer.

the location before as many of the Flickr and street-view
images were taken in the same locations in the US.

2.2. Network Architectures

Three architectures were used, each using the same
siamese CNN design (see figure 3) without weights shared
between the twins, and constructed from three layer blocks;
an embedding layer of a CNN pre-trained on ImageNet [3],
a feature extraction layer, and a differencing layer. The dif-
ferencing layer was only used for network training and cal-
culated the L2 distance as per equation 2.

The first network, based on the work of Lin et al. [10],
used a VGG16 [15] CNN as the embedding network, and a
three layer feature network made up of three fully connected
layers of 512, 256, and 256 neurons, each interspersed with
a batch normalisation layer. All layers used the ReLU acti-
vation function. The second used ResNet50 [6] as the em-
bedding layer, with a similar feature network as the first.
Finally CVM-Net [8] was implemented using a VGG16 em-
bedding and the NetVLAD layer for feature extraction.

2.3. Proportional Search Space Reduction

Proportional Search Space Reduction (PSSR) aims to
improve on the lack of context provided by the R@K metric
at low levels of recall. While R@K provides a quantitative
metric of the success rate of an algorithm, in the case where,
in a dataset of 5,000 images, an image that lies at index 102

of the ranked distances will not contribute to the accuracy
metric. However, a twofold improvement in recall sees that
same image indexed at position 51, yet still does not register
on the R@1% metric. PSSR takes the correct image as the
boundary and observes the number of values that fall above
and below the boundary. Formally defined as:

PSSR =
1

n

(
n∑

i=1

n− ki
n

)
(4)

where ki is the number of image embeddings that are
closer to or equidistant from the correct image and the an-
chor, and n is the size of the dataset. PSSR provides two
benefits over R@K. The granularity of averaged results
means that improvements of a small reduction (e.g. 1%)
averaged per image across all images will be reflected in
the metric in a way that is unlikely for R@K unless this
improvement were to fall across a specifically measured
boundary (such as the boundary between indexes 50 and 51
for R@1% on a dataset of 5000). Additionally PSSR results
can be measured element-by-element within the dataset,
demonstrating the distribution of results more clearly.

2.4. Hierarchical Super Batching

The use of online semi-hard triplet mining increased the
speed of learning, however the batches still inherently relied
on stocasticity within the shuffling of the batches to achieve
semi-hard triplets that were non-trivial for the network to
learn. As a batch size of 16 was used, the probability of
having similar images could be improved by creating ”su-
per batches” of similar satellite images and selecting mini-
batches from them for training.

An initial approach of treating this as a classification task
was considered, however as the images were encoded into
an n-dimensional euclidean space, k-means clustering pre-
sented an unsupervised option to categorise the similarity of
the images. A hypothesis was formulated that using a value
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Figure 4. k-means clustered dataset with k = 3, embedded by
CVM net with 1 epoch of training

of k = 3 would output three clusters aligned to the features
of urban, rural, and littoral satellite images.

The size of the dataset did not allow for k-means to be
run on it in its entirety, however a subset of 50,000 em-
beddings (circa 20% of the data) was used to train a model
that predicted the classes of the remaining 80%. Reducing
the dimensionality of the embeddings with PCA and apply-
ing the predictions as coloured overlay shows the mapping
of three distinct image super-batches. Figure 4 shows the
three classes in red, purple, and blue while figure 5 demon-
strates a random sub-sample of each class confirming that
the hypothesised split roughly holds across rural, urban, and
littoral terrain images.

2.5. Reducing Computational Overhead

Lin et al. in their 2015 paper, explored the use of separat-
ing the networks after training and pre-computing the satel-
lite images offline to speed up the comparison matching
process. They used Locality Sensitive Hashing to speed up
the comparison of k-nearest neighbours to query matches.
An alternative method of reducing the time taken to retrieve
from the search space is the use of k-means to bucket el-
ements within the dataset. When run recursively, with an
arbitrarily selected k, the search space can be divided into
kd buckets, where d is the number of times the dataset is
recursively clustered. This method generates a search tree
where the mean value of each class’ centroid is used as the
marker for each node. When retrieval is conducted, a single
forward pass of the query embedding is required. Subse-
quently the query embedding distance is calculated to the
mean of the k uppermost nodes. The closest is selected
and the next k nodes’s mean values are again retrieved un-
til the final bucket is reached. This algorithm allows for
O(logk(n)) time complexity.

Component Detail

OS Pop! OS 22.04 LTS x86 64
CPU AMD Ryzen 5 5600X (12) @ 3.700GHz
GPU NVIDIA GeForce RTX 3060
RAM 64221MiB

Table 1. Hardware specifications

3. Experiments
Given that the satellite images were all centered on the

point where the image was taken, in order to avoid the net-
work generalising to the centered location, the satellite im-
age data was randomly cropped to between 100% and 70%
of the original image size. To avoid a disparity between the
random crops of testing between test sets that were cropped
in a more or less difficult manner, the test set was ran-
domly cropped once and saved to file. This set was used
for every test. Each of the architectures were trained on the
CVUSA dataset. Each model was trained initially on the en-
tire test dataset using the max-margin loss function. Subse-
quently, once the loss function ceased improving, the super-
batches were created by classifying the embeddings that the
partially trained network had learned and were used to in-
crease the likelihood of hard and semi-hard triplets within
each batch. Additionally the loss function was changed to
the weighted soft-margin triplet loss for the second bout of
training. Both the PSSR and R@K metrics were recorded
for each test. The test set was made up of 6149 images
that were selected worldwide and did not share any loca-
tions with the training set, and were validated manually to
ensure that the images were of high quality and provided
enough context to be classified. It was hypothesised that
CVM-Net, as the most recently created of the three archi-
tectures, would prove to be the most performant.

3.1. Implementation Details

The models were all implemented in the Tensorflow 2
framework and containerised within docker to both take ad-
vantage of hardware acceleration and to improve reproduce-
ability. All training and testing was run on a machine with
specifications shown in table 1.

The models were optimised using the Adam optimiser
with a learning rate α = 1 × 10−5, a margin of m = 0.5
was used for the max-margin loss function when used; a
weight of λ = 10 for soft-margin loss. A mini-batch size
of 16 was used for each network while training for circa 10
epochs over the dataset taking around 25 hours to complete.

4. Results
The VGG16 and CVM-Net-I models performed reason-

ably similarly, with the CVM-Net-I proving to be slightly
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(a) Class: 0 (b) Class: 0 (c) Class: 0 (d) Class: 0 (e) Class: 0

(f) Class: 1 (g) Class: 1 (h) Class: 1 (i) Class: 1 (j) Class: 1

(k) Class: 2 (l) Class: 2 (m) Class: 2 (n) Class: 2 (o) Class: 2

Figure 5. A random sample from each class describes how the classes 0, 1, and 2 roughly align with the littoral, urban, and rural categories
respectively

Figure 6. k-means clustered dataset with k = 3, embedded by
CVM net with 7 epochs of training

more invariant to the cropping of the test set satellite im-

ages. Resnet50 performed exceptionally well, out perform-
ing the state of the art by a significant margin (circa 34%
R@1%). The previous study conducted by Hogan et al.
(WITW), where non-panoramic images were tested against,
stated ”Performance by one measure drops from 99% to
circa 3% when switching from aligned panoramas to an
equal number of ordinary photos. No single factor is re-
sponsible for that – it’s the collective result of many small,
quantifiable effects.”

Method Recall at top:

1 5 10 1% 5% 10%

VGG16 0.032 0.097 0.177 1.017 5.021 10.123
Resnet50 0.371 0.484 0.613 54.552 98.741 98.741
CVM-Net-I 0.0323 0.113 0.194 1.017 5.037 10.058

Table 2. Recall at K results using the un-cropped test set

It can be observed in figure 11 that, for selected exam-
ples of the network retrieving the correct image, the correct
images are being retrieved. However this quantitative anal-
ysis also highlights that the same images occur in each of
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Method Recall at top:

1 5 10 1% 5% 10%

VGG16 0.016 0.097 0.194 1.049 5.376 11.027
Resnet50 0.533 0.662 0.613 34.614 98.757 98.757
CVM-Net-I 0.048 0.113 0.194 1.017 5.004 10.010

Table 3. Recall at K results using the cropped test set

Figure 7. Resnet50 PSSR distribution histogram showing the num-
ber of images within each range of proportional reduction

the 13 images in the R@5 category. When the PSSR met-
ric for each model is plotted as a histogram (see figs 7 - 9)
the results are far less impressive. A well performing model
would be expected to have a high count at the 1.0 mark (re-
ducing the space almost completely) with a long tail on the
left as the harder to classify images cause more of the search
space to be included. Very slight perturbations in the CVM-
Net-I and VGG16 left sides show this very slightly, however
Resnet50 shows an almost perfect uniform distribution.

The high performance of the Resnet50 network becomes
apparent when its embeddings are directly contrasted to
VGG16. As both use the same feature extraction layer, both
embed to a 256 dimensional space and are plotted together
in fig 10. The embeddings for VGG16 fill the space, while
Resnet50 takes on a dense linear structure that embeds the
10,000 images very close together.

5. Discussion

The key to understanding the disparity between the very
high performance of the Resnet50 network on the R@1%
metric, while performing no better than random with PSSR
is due to the implementation of R@K. Examining the im-
plementations of some of the latest CVIG papers’ validation
steps provides some insight; Hu et al. [8] published their
Tensorflow 1 code from CVM-Net which was also used by

Figure 8. VGG16 PSSR distribution histogram showing the num-
ber of images within each range of proportional reduction

Figure 9. CVM-Net-I PSSR distribution histogram showing the
number of images within each range of proportional reduction

Lui et al. [11] and Shi et al. [14] without major modifica-
tion:

for i in range(dist_array.shape[0]):
gt_dist = dist_array[i, i]
prediction = np.sum(dist_array[:, i] < gt_dist)
if prediction < top1_percent:
accuracy += 1.0

data_amount += 1.0
accuracy /= data_amount

Hogan et al. used a PyTorch implementation with a vec-
torised solution:
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Figure 10. A plot of 10,000 image embeddings for both Resnet (in
blue) and VGG16 (red)

for idx in tqdm.tqdm(range(count)):
...
ranks[idx] = torch.sum(torch.le(

distances,
distance)).item()

...
top_percent = np.sum(ranks * 100 <= count)

/ count * 100

And this study implemented a Tensorflow 2 version that
similarly took advantage of vector operations:

correct_dists = distances.diagonal()
sorted_dists = np.sort(distances, axis=1)
one_percent_idx = int(float(count) * 0.01)
top_one_percent = np.sum(correct_dists <=

sorted_dists[:, one_percent_idx])
/ count * 100

It should be noted that all of these implementations of
R@1% follow the same algorithm:

Algorithm 1: Recall at K
Input : Set of distances D
Output: Count of distances satisfying the condition

Step 1: Identify the correct distance (d̂);
Step 2: Calculate the index for the 1% element

(d1%) and retrieve its value;
Step 3: Count for all d̂ < d1% or d̂ ≤ d1%;

In the case where d1% is equal to many values, retrieving
the top 1% of closest elements to a query within the dataset
will not necessarily select the element corresponding to d̂,
depending on the sorting algorithm used. I.e. if 1% of the
dataset is 600 images, however 800 images correspond to
the same location in the vector space, including the correct

one, whether or not the correct image is included will de-
pend on the order of the sorted elements that are equal to
each other. In the case of the Resnet50 network, where a
very dense mapping into the vector space occurs, there in-
evitably are far more of the dataset than the top 1% of ele-
ments.

6. Conclusion

This paper introduced a new metric for evaluating the
performance of Cross-View Image Geo-Location models, a
method of improving online triplet mining through hierar-
chical batching and introduces an architecture that achieves
state-of-the-art results. This performance is marred by the
fact that the canonical Recall at K metric was proved to be a
poor metric to show performance in real world applications
in the way it has been implemented within the literature and
recommends the use of PSSR to asses the performance of
future CVIG models.
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