
1

Adversarial Search and Machine Learning applied
to Bamboo

Debnath.L Hartmann.A Gauthier.B Terragni.G Guetta.G De Koster.S

Department of Data Science and Knowledge Engineering
Universiteit Maastricht

January 25, 2022

I. ABSTRACT

Bamboo is a two player strategy game played on a hexago-
nal grid where each player places counters according to a rule
set and the last player able to make a legal move is the winner.
A number of heuristics were explored, evaluated and used
to develop MiniMax, Monte Carlo Tree Search, and Neural
Network AI players. These players were evaluated against a
randomised player and each other to identify the best heuristic
for the game, the optimal hyper-parameters for each AI, and
the best AI overall. The time taken for players to make a move
was considered as a factor for the best AI.

MiniMax with Alpha-Beta pruning was found to provide
the best player, however, it is not scale-able for larger grid
sizes.

II. INTRODUCTION

Bamboo is a simple, two-player, turn-based, winner-takes-
all game in which players place counters on an empty hexag-
onal board to form groups of counters [1]. Created in March
2021, it is relatively unknown and has not seen the attention
of AI research as more established games have (Go, Chess,
Draughts etc). The game is played on an initially empty
hexagonal board, with each player placing counters in turn.
Players must place a counter every turn, with the aim of
forcing the opponent to be left on their turn without a legal
move to play. The game is fully observable and deterministic.

A. Game Mechanics

Several definitions are required for the discussion of the in-
tricacies of the subject. To facilitate the indication of locations
of tiles (spaces on the hexagonal board) and counters (colours
assigned to tiles to indicate player ownership) a 3-Dimensional
(3D) system of coordinates will be used [2]. This will take the
shape of a slice of a 3D matrix for which all the entries are
those for which the sum = 0. More formally a vector v where,

v ∈ {x|x ∈ Z3, x1 + x2 + x3 = 0}, (1)

Fig. 1. An empty board at the start of the game

Fig. 2. A representation of a 3D coordinate system for a 2D hexagonal grid
[2]

such that tile(v) represents the tile at the location vector v.
Players are defined as one of two colours, in the case of this

particular implementation staying true to the original author’s
wishes [1], the colours blue (b), red (r) and white (w) are
used with the function of colour for a tile t defined as:

col(t) ∈ {r, b, w}. (2)

A group g is defined as a set of two or more counters of
the same colour which share an incident edge. Thus it can be
assumed that, for any tile at vector v neighbours any other
vector u if the difference v − u for two dimensions is equal
to 1. Therefore,

2

u neighbours v ⇐⇒
∑

(ui − vi)2 = 2 (3)

Additionally the function moves(b) and moves(r) indicate
the legal moves available to the blue and red players
respectively.

Several metrics are important for the playing of Bamboo.
The size of a group |g| is defined as the number of counters
that exist within the group, this can be associated to a player
such that |gb| is the size of a group for the blue player. The
largest group for a player is denoted ĝb the size of the largest
group for a player is thus |ĝb|. The set of all groups for a
player is indicated with G and it’s size with |G|.

Fig. 3. A legal board showing |Gb| = 10, ĝb = 6, |Gr| = 9 and ĝr = 5

A single additional rule on placement adds a layer of
complexity to the game; namely the size of the largest group
cannot be larger than the total number of groups currently in
play for that player. Formally,

∀ g ∈ G : (|g| ≤ |G|). (4)

Fig. 4. Grey tiles indicate places where the blue player is unable to place
counters without violating the rule |g| ≤ |G|

The winner of the game is the last player to successfully
place a counter, this requires the players to not only mind the
size and quantity of their own groups, but to keep track of
their opponent’s metrics, identify their possible moves, and
interdict wherever possible while maintaining options for a
final placement for a winning move.

B. Analysis

1) Number of Moves: The number of possible moves within
the board can be calculated using the formula:

n+

n∑
i=r

2i (5)

where r is the radius; the number of tiles counted from the
centre tile along any of the coordinate axes and n = 1+2(r−1)
In a game where the grid is of radius 5 there are 91 possible
moves at the start of the game.

C. Branching Factor Bounds

Assuming that each player is able to take any unoccupied
place in the grid, and evaluates every possible branch, a total
of 91! or 1.3520× 10140 moves are possible. This provides a
very high upper bound complexity of O(b!), that is far from
the actual value. An estimate closer to reality can be estimated
using a Monte Carlo method by running games randomly
and measuring the number of moves until game completion,
taking the minimum number of turns to finish a game, 72.
This reduces the lower bound of total evaluations to 72! or
6.1234× 10103

a reduction by a factor of 1037. Finally if the number of
evaluations can be measured for each game, then an average
bound of 1.37863 × 10126 is arrived at experimentally. This
still leaves the search problem as unsolvable in any reasonable
time period.

E(γ) = (|Gr|+moves(r))− (|Gb|+moves(b)) (6)

D. Problem Statement

To generate an Artificial Intelligence model capable of
routinely winning against an average human player of the
game Bamboo.

E. Research Questions

1) What is the heuristic that provides the highest success
rate if followed?

2) Is there an first move or last move advantage for the
game Bamboo?

3) What is the optimal search depth for MiniMax within a
reasonable time limit?

4) With optimal hyper parameters, can MCTS out-perform
MiniMax in this ”sudden-death” style game?

5) Can a neural network be trained to the same or higher
standard of play than MiniMax/MCTS?

6) How can performance be increased using a hybrid of
two algorithms?

7) What is the best algorithm for an agent to use in
Bamboo?

III. METHODS

A. Random

A player that has no knowledge of the game can effectively
play by selecting a tile at random as their next move. This
agent, on the balance of probability, has a 50% chance
of winning against another randomly playing agent. An

3

implementation of a random agent provides the ideal baseline
for testing the effectiveness of human and AI players by
playing a statistically significant number of games and
evaluating the number of wins and losses.
In addition to the random uniform selection of moves,
several heuristics for move selection were used. Instead of
selecting moves completely at random, the agent then orders
moves according to some heuristic criterion and uses uniform
shuffling only as a tie breaker. The heuristics were defined as
follows:

1) Outer Weighting: It was observed that selecting the
outermost tiles allowed the player to form groups around
the board that were unlikely to be connected later on in
the game. Thus the distance from zero to each tile was
calculated by taking the maximum value of its vector,
such that dist(0, v) = max(v). When selecting using the
outer weighting heuristic, the tiles with the higher distance
were prioritised and ties were broken randomly (see Figure 5).

2) Maximise Group Count: Keeping the number of groups
high allows a player to keep open as many options as
possible until the last possible play, increasing the likelihood
of winning. The maximise group count heuristic selects the
move that keeps the group count as high as possible.

3) Maximise Sparsity: Sparsity is defined as the average
distance between all tiles of the same colour. As with the
maximise group count, increasing the distance between tiles
early on was observed to provide the player with an advantage
later in the game as placing a tile was less likely to merge
two groups. The distance from each candidate tile u, to a
tile v ∈ V where V is the set of all tiles of the same colour,
was calculated. The tile with the highest average distance
to all other tiles would be selected, with ties broken randomly.

4) Maximise Sparsity and Outer Weighting: The final
heuristic used the Maximum Sparsity heuristic and breaks
ties using the Outer Weighting method.

TABLE I
HEURISTICS FOR RANDOM AGENT MOVE SELECTION

Heuristic Goal
Uniform Entirely pseudo-random selection

Outer weighted Prioritise outermost moves
Group count Maximise the number of player groups

Sparsity Maximise distance to closest friendly tile
Sparsity & Outer weighted Sparsity breaking ties with Outer weighted

B. Minimax

MiniMax [3] is an algorithm that evaluates the states of
the game and assumes that the opponent will always choose
to minimise their losses. It builds a tree of possible game
states from a given starting point using depth-first search. As
it is not possible to search until every possible terminal game
state is found, an evaluation function is used as a heuristic

to evaluate a state at any point with a positive or negative
value providing a metric for how beneficial the state is for the
current player. MiniMax can be very slow in games with a
branching factor as large as Bamboo’s, its performance must
be optimised. Alpha-beta pruning [4] is a method in which
branches that cannot have an effect on the final evaluation
of the MiniMax tree are pruned before further evaluation. To
further improve the efficiency, a method of move ordering is
applied. By ordering child nodes by applying a lightweight
evaluation heuristic for each node in the tree, it is possible
that more branches can be pruned.

C. Monte Carlo Tree Search

Monte Carlo methods utilise random sampling to obtain
accurate predictions. The use of the technique competitively in
Crazy Stone won the 9x9 Go tournament at the 2006 Computer
Olympiad [5]. It is however unable to evaluate states mid-game
and suffers from poorer performance in sudden-death games
where a single position change can terminate the entire game
[6]. Monte Carlo Tree Search (MCTS) is a best-first search
method that generates a search tree by exploring new nodes,
adding them to the search tree and randomly playing those
nodes to completion. The wins or losses of these randomly
played games are back-propagated up the tree and inform the
selection of future nodes to be evaluated. The key strength of
MCTS is that it does not require an evaluation function of the
game state to evaluate the board, for an unknown game such
as Bamboo this can allow for generating sets of moves that a
heuristic based search may not find.

D. Neural Network

The game of Bamboo can be likened to many other turn
based, fully observable games such as chess, draughts, Chinese
Checkers and Go. The search space of potential moves is large,
too large for a rapid and exhaustive analysis of all moves
and future reactions from opponents. Humans do not analyse
games in this exhaustive way [7], instead perceiving strategies
in a less systematic, more intuitive style.
To implement this approach computationally, the use of Neural
Networks can mimic the way that humans perceive game play.
To generate the input to the network, the grid can be turned
into a vector ~x where each entry ∈ {1, 0,−1} (for the current
player, empty, and opponent’s tiles respectively) and is passed
into the first layer of the network. The level of activation for
each layer depends on the activation added to a weight w
for each node within the network. By propagating forwards
the network can indicate the output on the grid by selecting
the element of the output vector with the highest activation
through the use of a Softmax layer[8]. Generating a large
sample of data allows the calculation of the difference between
the output of the network ŷ and the labeled output y. Back-
propagating this difference through the network and adjusting
the values of the weight by the partial derivative allows the
network to learn the correct responses to the input stimuli.
Forward propagation can be extremely quick when compared
to search based agents. Further inspiration could be taken from

4

Fig. 5. Visual representations of the decision making processes of each heuristic, numbers show the value given to each potential move

Deep Blue, the chess playing AI that defeated Kasparov in
1996 [9] by having two networks, a policy network and a
value network. The role of the policy network is to reduce the
possible number of moves, while the value network evaluates
those moves to the most likely to win.

Fig. 6. Example of a neural network with three hidden layers of size 2n and
|Y | = |X|

E. Hybrid agent

As a simple hybrid agent, a combination of neural network
and minimax is presented here. This is done to get a decent
but fast move selection in early stages of the game where
many tiles are left and minimax would be slow at selecting
a move. Therefore, the neural network, trained on minimax
data, is employed to speed the early stages up. Later in the
game, the agent will use pruned minimax with move ordering
to look multiple turns ahead and select optimal moves.

IV. IMPLEMENTATION

A. Random

The implementation of the uniform random agent is based
on a stack (see Figure 7). In the beginning all moves that
would color uncoloured tiles from the grid are pushed onto
the stack. The agent shuffles the stack and then pops the first
move. This is then checked for legality, given the current grid
state.

When applying a non-uniform heuristic (see Table I), the agent
utilises a priority queue with a comparator that implements the
selected heuristic. This serves the same purpose as the stack
in the uniform version.
The selection process is repeated until a valid move is found, in
case no tiles can be selected, the game ends and the opponent
wins.

B. Minimax

For the MiniMax implementation, a node tree is built using
depth-first search. Here, each node contains an evaluation,
a grid state and a move that led to it. The agent looks for
legal moves in the child nodes of the current node and then
recursively calls MiniMax on legal child nodes until a specified
search depth is reached (see Figure 8, Appendix A). At this
point, the game state γ is statically evaluated.

E(γ) = (|Gr|+moves(r))− (|Gb|+moves(b)) (7)

The evaluation always occurs from the red player’s
perspective, meaning that the red player wants to maximize
while blue aims to minimize the evaluations. Depending
on what colour’s turn it is, the minimum or maximum
evaluation is passed up to the parent. The evaluations are
back-propagated recursively up the tree, alternating between
passing the minimum and maximum node evaluations up
to the parents. This then yields the evaluation with the best
worst-case outcome for the agent. The agents expects to get
the best results, assuming that the opponent plays ideally
(with regard to the evaluation function used). This process
yields good results, but has factorial time complexity O(n!).
Therefore, alpha-beta pruning is employed to speed up the
process.

1) Alpha-beta pruning: When using alpha-beta pruning,
the underlying process of minimax remains unchanged. For
each level one node, we now keep track of the best value
for the maximizing player (α) and the best value for the
minimizing player (β). Once the first branch is traversed,
these values are set to the best values found on that branch.
Before evaluating the next branch, for each node, it is
checked whether the best evaluation for the current player
can be greater than alpha. This is done by checking whether

5

Fig. 7. Stages of selection of a pseudo-random move

Fig. 8. MiniMax decision making

the other player has an option that is better than β, which
would mean that this cannot be the ideal branch for the
maximizing player, since the minimizing one will play a
move that yields better results than one that was found earlier
(and stored in the β variable). This can be seen in Figure 9
(and Appendix B), where it is shown how pruning branches
can lead to fewer evaluations needed to achieve the same
results. This performance gain of pruning branches heavily
depends on the ordering of leaf nodes. In the best case, with
child nodes perfectly ordered, pruned Minimax can achieve
O(n!

(n−d)! + d · n), fully exploring one branch and pruning
all others after one evaluation. In the worst-case scenario, a
worst to best ordering, alpha-beta will never prune a single
branch. For the inverse, performance can increase by a lot.
Therefore, time complexity remains O(n!), although pruning
makes the worst case performance far less likely.

2) Alpha-beta sorted: As the gain from pruning branches
heavily depends on node order, to further increase the
likelihood of achieving best case pruning performance, one
can sort the child nodes before evaluation (see Appendix
C). In order not to have to evaluate the entire game state

for sorting, a heuristic function is employed. Since every
new node results from making a move (placing a tile), the
heuristic for the resulting grid state will be based on the
location of the target vector of the move.
The heuristic function used was the sum of squares of that
vector, this was based on the observation that tiles at the
extremities of the board are less likely to be linked into
larger groups, keeping |G| high and gmax low. This has the
drawback of prioritising outside tiles, even when the outsides
are already filled to some extent, increasing the likelihood of
merging groups.
Since all vectors in the game are integer-based, the sum of
squares will always be an integer. This allows sorting nodes
using Radix sort [10], which runs in O(d(n+ k), where d is
the number of digits of the largest element, k is the largest
element (see Appendix D). This allows the agent to sort even
larger lists of nodes without compromising performance. The
pruning gain caused by sorting now depends on how well
aligned static evaluation function and heuristic function are.
If, in fact, outside tiles were always ideal, sorting would
always lead to best case pruning performance. Since this is
not the case though, and more likely to be the case in the

6

Fig. 9. MiniMax evaluation with pruning

beginning, sorting might prove most useful in the early stages
of the game.

C. Monte Carlo Tree Search

The MCTS algorithm is composed of four stages that are
run iteratively for t repetitions. The stages are Selection,
Expansion, Play-out and Back-propagation. Each node i stores
the grid state as well as several variables with information
on the children of the node. Namely the value of the current
position vi from the average wins of games originating at this
node and the visit count ni of the node. To aid in retaining
as much computation as possible, the tree from each iteration
is saved in RAM and, when future moves are to be taken, the
top is pruned to the current

1) Selection: In the selection phase the tree is traversed
from the root node until a child is found that is not part of
the tree. The child is selected using the Upper Confidence
Bound for Trees (UCT) [11] which uses a value C to tune the
exploration/exploitation decision making of the agent.

k ∈ argmaxi∈I

(
vi + C ×

√
lnnp
ni

)
(8)

where i is the current node, vi is the value of wins for the
node i, np is the number of visits to the parent of i and ni is
the number of visits to node i.

2) Expansion: In the expansion step, the selected node is
added to the tree.

3) Play-out: During play-out, a full game is simulated,
with each player randomly playing moves until a terminal
game state is reached. The game is recorded as either a win,
returning a value 1, or a loss, returning 0. As there are no
possible draws, the use of the set {1, 0,−1} was eschewed in

favour of a binary win/loss rate.

4) Back-propagation: During the back-propagation phase
the results of the play-out are updated to the parent of the
selected node, these changes are propagated up the tree until
the root node. The move played by the program is the child
of the root node with the highest visit count.

D. Neural Network

The Neural Network implementation consisted of three
parts; modelling, data collection, and hyper-parameter tuning.

1) Modelling: The game Bamboo can be modelled in
a simple manner as a data set of inputs X (the state of
the current board) and outputs Y (actions to take given
X). In this case ~x and ~y can both be formed as vectors
where ~xi ∈ X, ~yi ∈ Y and ~xi, ~yi ∈ Zn. The vectors are
ordered lowest to highest, with all values in X ∈ {1, 0,−1}
encoded for current player, unoccupied, and opponent tiles
respectively. The outputs are one hot encoded such that
Y ∈ {0, 1}, with only one dimension of any value of ~y being
non-zero.

2) Data Collection: The data was gathered by simulating
games between MiniMax, MCTS, and Human agents and
recording moves made. This was done to add pertubations
to the data so that it did not become a clone of a single
algorithm. Given the higher standard expected of the
algorithmic solutions, their contribution to the data set was
weighted by repeating their values within the set.

3) Hyper-parameter tuning: Initially a simple 3-hidden-
layer, fully connected network was used. The size of each
hidden layer was two times the size of the input vector,
with a ReLU activation function. The output layer was fully
connected and used a Softmax activation, outputting a one

7

Fig. 10. The four stages of the MCTS algorithm

hot encoded vector for the move with the highest activation.

E. Hybrid agent

The hybrid agent is supplied with a counter for empty tiles
on the grid. Once this counter reaches a certain threshold,
the agent switches from using NN to using Minimax. This
threshold value is subject to experimentation in the following
section.

V. EXPERIMENTATION

A. Coin Toss

In order to run reliable experiments, we must control for
as many outside influences as possible. One such influence is
whether there is a significant first or last move advantage. This
was tested by recording win rates of a random agent against
another random agent in 100 games and recording if the first
or last move player won. The results can be seen in Table II.
It is quite obvious that, especially for small grid sizes, taking
the first turn is a great disadvantage. Therefore, to control for
this effect, for all experiments run in this section, each player
starts exactly half of the games recorded.

TABLE II
WIN RATES OF STARTING AGENT IN RANDOM VS RANDOM

Size Starting win rate LLCB ULCB
1 12% 1.44% 22.56%
2 38% 29.05% 46.95%
3 45% 33.86% 56.14%
4 46% 34.57% 57.43%
5 49% 36.75% 61.25%

Note. 95% CIs based on assumed binomial distribution of win rates.

B. Heuristics

In this section, the win rates of random agents applying
the different heuristics from Table I are presented. The perfor-
mance of every heuristic against every other heuristic is also
shown to point out possible strengths and weaknesses of the
methods.

TABLE III
WIN RATE MATRIX OF RANDOM AGENTS APPLYING DIFFERENT

HEURISTICS

Agent 2
Agent 1 U O G S S & O

Uniform (U) - - - - -
Outer weighted (O) 100%* - - - -

Group count (G) 36% 0%* - - -
Sparsity (S) 44% 0%* 54% - -

S & O 100%* 12%* 100%* 100%* -
* Statistically significant difference from 50% at α = .05

In Table III, one can see that the outer weighted heuristic
allows the random agent to win consistently against all other
heuristics. The only matchup that it does not win all the time
is the one against the combined sparsity and outer weighted
heuristic. This is expected though, since it employs outer
weighted at its core as well. From this analysis, it is concluded
that preferring outer tiles is the most effective heuristic of the
ones discussed in this article.

C. Evaluating MiniMax

The aim is to find out at what search depth Minimax stops
improving its efficiency, defined as milliseconds per win.
To calculate this, win rates and time spent on turns were
collected for 100 games against a random agent employing
the outer weighted heuristic. In Figure 11, one can see that
a search depth of 2 yields the best efficiency. Thus, it is
concluded that a search depth of 2 is the most efficent way
for Minimax to play Bamboo, given that search depth is kept

8

constant.

Fig. 11. Minimax efficiency plotted against search depth

D. Optimise MCTS

In order to judge whether MCTS could beat Minimax in
Bamboo, the parameters c and iterations k must be optimized.
To do so, MCTS win rates against a random uniform agent
are recorded with k ∈ {1, 250, 500, 1000}, c ∈ [0, 1] over
100 games. As expected, the agent performs best with the
maximum iterations setting (1000). Note that when testing,
MCTS took less than a second per turn, meaning that 1000
iterations is well playable. Thus time is not a factor here. A
Loess-interpolated plot of the win rates can be seen in Figure
12. With 1000 iterations, the agent reaches a mean win rate
of 87%, not correcting for the effect of c.

Fig. 12. Win rates by iterations with 95% CIs

For tuning the c value, it is less clear what the optimum is
here. The maximum win rate with 1000 iterations is achieved
with c = .2 and c = .4. Since the 95% lower CI bound over
all iterations values is higher for the latter, it is decided that
c = .4 represents the value closest to the optimum for this
agent in Bamboo. This can be seen in Figure 13.

With this pair of settings, 1000 iterations and c = .4, the
agent reached a mean win rate of 91%.

Fig. 13. Win rates by c value for 1000 iterations with 95% CIs over all
iterations settings

E. Optimising hybrid agent

To find an optimal threshold for the hybrid agent to switch
its approaches from NN to Minimax, an efficiency analysis
is run. Over 100 games, win rates and time expenditure are
recorded. To find a good threshold value, the aim is to find
points at which the efficiency η(i), defined as

η(i) = wi −
ti

max(t)
(9)

is optimal. Here, wi represents the win rate achieved with
threshold value i, ti represents the time spent on selecting
moves for threshold value i. Note that w0, t0 refer to w, t for
a pure NN agent, since the threshold to switch to Minimax is
0, which can never be reached. In Figure 14, one can see that

Fig. 14. Efficiency values for hybrid agent by threshold values

the optimal value for the switch threshold is 40. To understand
what this means, see Figure 15.

Thus, 40 represents the point at which the difference
between achieved win rate and relative time expenditure is
maximal. Thus, for an optimally efficient result, the hybrid
agent should employ NN until 40 tiles are left to be colored,
at which point it switches to Minimax.

F. Determining the best agent

With the agents optimized to some degree, a round-robin
style evaluation of agents is performed. Every agent plays

9

Fig. 15. Win rates and relative time expenditure by threshold value

100 games against every other agent, starting exactly half the
games. The results can be seen in Table IV.

TABLE IV
WIN RATES OF AGENTS AGAINST EVERY OTHER AGENT

Agent Random Minimax MCTS NN Hybrid
Random - - - - -
Minimax 100%* - - - -
MCTS 88%* 1%* - - -

Neural Net 52% 0%* 1%* - -
Hybrid 91%* 0%* 45% 100% -

* Statistically significant difference from 50% at α = .05

It is clear that the Minimax agent appears to perform best
with win rates ≥ 99%. MCTS and the hybrid agent have
the second highest win rates against the random uniform
agent, with hybrid scoring a little higher. Still, MCTS is the
only agent that managed to win a game against Minimax.
Furthermore, the direct comparison goes to MCTS. Since this
observation is not statistically significant, it is concluded that
MCTS and hybrid perform similarly in Bamboo. The neural
network performed the worst, not performing significantly
better than the random uniform agent despite being trained
on, mostly, Minimax data. Overall, it appears that Minimax
is the best way to go for an agent, soundly beating MCTS as
well as a feedforward neural network.

VI. CONCLUSION

The MiniMax algorithm has a great performance in terms
of winning but, due to the requirement to evaluate many leaf
nodes, does not scale well for gird sizes larger than those
evaluated in this paper. It is noticeable when comparing the
run time required to compute the next move with the run time
of MCTS agent. The former takes approximately two seconds
for the grid of size 5, while the latter takes just 0.5 seconds.
The MiniMax algorithm, although evaluated as the best of the
algorithms examines, is not necessarily optimal as it uses an
evaluation heuristic that has not been proven to make optimal
decisions.

Conversely, the Monte Carlo Tree Search algorithm does
not require a heuristic or evaluation function involved. The
downside of this algorithm is that it is unable to deal with
the sudden-death nature of many of the boards it evaluates.
Moreover, it is extremely slow at higher iteration values, thus

a balance needs to be struck between speed and accurate
simulation.

The neural network is much faster than MCTS, but exhibits
much lower quality. Furthermore, it is constrained to the grid
size it was trained and designed for, creating the need to
create separate networks for each grid size. To combat the low
move selection quality, which is on par with a random uniform
agent, a different network architecture could be employed. For
example, to retain the spatial aspects of the grid, instead of
flattening it to an input vector, one could use a convolutional
neural network in a follow up study.

10

REFERENCES

[1] M. Steere, “Bamboo,” 2021. [Online]. Available:
https://www.marksteeregames.com

[2] RedBlobGames, “Hexagonal grids,”
2020. [Online]. Available:
https://www.redblobgames.com/grids/hexagons/#basics

[3] J. Pearl, “Asymptotic properties of minimax trees
and game-searching procedures,” Artificial Intelligence,
vol. 14, no. 2, pp. 113–138, 1980.

[4] D. E. Knuth and R. W. Moore, “An analysis of alpha-
beta pruning,” Artificial intelligence, vol. 6, no. 4, pp.
293–326, 1975.

[5] G. Chaslot, “Monte-carlo tree search,” Netherlands Or-
ganisation for Scientific Research, 2010.

[6] M. P. D. Schadd, M. H. M. Winands, H. J. van den
Herik, G. M. J. B. Chaslot, and J. W. H. M. Uiterwijk,
“Single-player monte-carlo tree search,” Lecture Notes in
Computer Science, vol. Vol.5131, pp. 1–12, 2008.

[7] K. C, “How the computer beat the go player,” Scientific
American Mind, vol. 27, no. 4, p. 20–23, 2016.

[8] R. A. Dunne and N. A. Campbell, “On the pairing of the
softmax activation and cross-entropy penalty functions
and the derivation of the softmax activation function,”
in Proc. 8th Aust. Conf. on the Neural Networks, Mel-
bourne, vol. 181. Citeseer, 1997, p. 185.

[9] T. Munakata, “Thoughts on deep blue vs. kasparov,”
Communications of the ACM, vol. 39, no. 7, pp. 91–92,
1996.

[10] P. Horsmalahti, “Comparison of bucket sort and radix
sort,” arXiv preprint arXiv:1206.3511, 2012.

[11] S. Levente.K, “Bandit based monte-carlo planning,”
2006.

APPENDIX

A. Pseudocode MiniMax

Minimax(rootNode,depth,maximizing)
if maximizing

currentColor := red
else

currentColor := blue
end if
grid := grid state of rootNode
if depth == 0 or grid is finished

rootNode value := static evaluation
return static evaluation of grid

end if
add legal children to rootNode
if maximizing

maxEval := -Inf
for each child in rootNode children

eval := Minimax(child,
depth-1,false)

maxEval := max(eval,maxEval)
end for
set rootNode value to maxEval
return maxEval

else
minEval := Inf
for each child in rootNode children

eval := Minimax(child,
depth-1,true)

minEval := min(eval,minEval)
end for
set rootNode value to minEval
return minEval

end if

B. Pseudocode pruned MiniMax

Minimax(rootNode,depth,alpha,beta,maximizing)
if maximizing

currentColor := red
else

currentColor := blue
end if
grid := grid state of rootNode
if depth == 0 or grid is finished

rootNode value := static evaluation
return static evaluation of grid

end if
add legal children to rootNode
if maximizing

maxEval := -Inf
for each child in rootNode children

eval := Minimax(child,
depth-1,alpha,beta,false)

maxEval := max(eval,maxEval)
if maxEval >= beta

break
end if
alpha = max(alpha,maxEval)

11

end for
set rootNode value to maxEval
return maxEval

else
minEval := Inf
for each child in rootNode children

eval := Minimax(child,
depth-1,alpha,beta,true)

minEval := min(eval,minEval)
if minEval <= alpha

break
end if
beta = min(beta,minEval)

end for
set rootNode value to minEval
return minEval

end if

C. Pseudocode sorted pruned MiniMax

Minimax(rootNode,depth,alpha,beta,maximizing)
if maximizing

currentColor := red
else

currentColor := blue
end if
grid := grid state of rootNode
if depth == 0 or grid is finished

rootNode value := static evaluation
return static evaluation of grid

end if
add legal children to rootNode
sort(rootNode children)
if maximizing

maxEval := -Inf
for each child in rootNode children

eval := Minimax(child,
depth-1,alpha,beta,false)
maxEval := max(eval,maxEval)
if maxEval >= beta

break
end if
alpha = max(alpha,maxEval)

end for
set rootNode value to maxEval
return maxEval

else
minEval := Inf
for each child in rootNode children

eval := Minimax(child,
depth-1,alpha,beta,true)
minEval := min(eval,minEval)
if minEval <= alpha

break
end if
beta = min(beta,minEval)

end for
set rootNode value to minEval

return minEval
end if

D. Radix sort

sort(nodes)
maxDigits := digits(max(nodes))
buckets := List of 10 empty Deques
for each digit i of node evaluations

for each node in nodes
digit := ith digit of node value
add node to buckets[9-digit]

end for
clear nodes
for each bucket

while bucket is not empty
add first element of bucket to nodes

end while
end for

end for
return nodes

